Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 35(1): 17, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507150

RESUMO

3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.


Assuntos
Vidro , Tecidos Suporte , Humanos , Vidro/química , Tecidos Suporte/química , Durapatita/química , Fosfatos de Cálcio/química
2.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802745

RESUMO

Hybrid scaffolds based on bioactive glass (BAG) particles (<38 µm), covalently linked to gelatin (G*) using 3-glycidoxypropyltrimethoxysilane (GPTMS), have been studied for bone bioengineering. In this study, two glass compositions (13-93 and 13-93B20 (where 20% of the SiO2 was replaced with B2O3)) were introduced in the gelatin matrix. The Cfactor (gelatin/GPTMS molar ratio) was kept constant at 500. The hybrids obtained were found to be stable at 37 °C in solution, the condition in which pure gelatin is liquid. All hybrids were characterized by in vitro dissolution in Tris(hydroxymethyl)aminomethane (TRIS) solution (for up to 4 weeks) and Simulated Body Fluid (SBF) (for up to 2 weeks). Samples processed with 13-93B20 exhibited faster initial dissolution and significantly faster precipitation of a hydroxyapatite (HA) layer. The faster ion release and HA precipitation recorded from the G*/13-93B20 samples are attributable to the higher reactivity of borosilicate compared to silicate glass. The MC3T3-E1 cell behavior in direct contact with the hybrids was investigated, showing that the cells were able to proliferate and spread on the developed biomaterials. Tailoring the glass composition allows us to better control the material's dissolution, biodegradability, and bioactivity. Bioactive (especially with 13-93B20 BAG) and biocompatible, the hybrids are promising for bone application.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Gelatina/química , Vidro/química , Silanos/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Durapatita/química , Camundongos , Osteoblastos/citologia , Dióxido de Silício/química , Engenharia Tecidual/métodos , Tecidos Suporte/química
3.
Molecules ; 23(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314284

RESUMO

Astaxanthin is a xanthophyll carotenoid showing efficient scavenging ability and represents an interesting candidate in the development of new therapies for preventing and treating oxidative stress-related pathologies. However, its high lipophilicity and thermolability often limits its antioxidant efficacy in human applications. Here, we developed a formulation of lipid carriers to protect astaxanthin's antioxidant activity. The synthesis of natural astaxanthin-loaded nanostructured lipid carriers using a green process with sunflower oil as liquid lipid is presented. Their antioxidant activity was measured by α-Tocopherol Equivalent Antioxidant Capacity assay and was compared to those of both natural astaxanthin and α-tocopherol. Characterizations by dynamic light scattering, atomic force microscopy, and scattering electron microscopy techniques were carried out and showed spherical and surface negative charged particles with z-average and polydispersity values of ~60 nm and ~0.3, respectively. Astaxanthin loading was also investigated showing an astaxanthin recovery of more than 90% after synthesis of nanostructured lipid carriers. These results demonstrate the capability of the formulation to stabilize astaxanthin molecule and preserve and enhance the antioxidant activity.


Assuntos
Antioxidantes/administração & dosagem , Lipídeos , Nanoestruturas , Antioxidantes/síntese química , Fenômenos Químicos , Portadores de Fármacos , Lipídeos/química , Microscopia de Força Atômica , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Xantofilas/administração & dosagem , Xantofilas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...